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Abstract 
This paper presents a comprehensive review of Physics-Informed Neural Networks (PINNs), a 
hybrid framework that integrates scientific domain knowledge with deep learning 
architectures. PINNs incorporate physical laws, typically expressed as partial differential 
equations (PDEs), directly into the neural network training process. This approach addresses 
fundamental limitations of purely data-driven models in modeling complex physical systems, 
particularly in scenarios with data scarcity or when physical plausibility is crucial. We examine 
the mathematical foundations, implementation strategies, and diverse applications of PINNs 
across fluid dynamics, structural analysis, and other scientific domains. The paper also discusses 
current challenges in PINN development, including training difficulties, scalability issues, and 
theoretical gaps, alongside emerging research directions aimed at overcoming these 
limitations. By synthesizing recent advances and identifying open problems, this review 
provides a roadmap for researchers and practitioners seeking to leverage the synergy between 
physical principles and deep learning for scientific discovery and engineering applications. 

1. Introduction 

1.1 The Intersection of AI and Physical Sciences 
The remarkable success of deep learning in fields like computer vision and natural language 
processing has sparked interest in applying these techniques to scientific and engineering 
domains [1,2]. However, modeling complex physical systems presents unique challenges that 
conventional deep learning approaches struggle to address effectively [3]. Physical phenomena 
are governed by well-established laws and principles that are often expressed mathematically 
as differential equations. These equations encapsulate centuries of scientific knowledge and 
provide strong constraints on possible solutions. 

Traditional scientific computing relies on numerical methods to solve these equations, while 
conventional machine learning approaches attempt to learn patterns directly from data without 
incorporating domain knowledge. Physics-Informed Neural Networks (PINNs) represent a 
hybrid paradigm that bridges these approaches by embedding physical laws directly into the 
neural network architecture [4]. This integration creates a symbiotic relationship where 
physical principles guide the learning process, and deep learning techniques enhance the 
solution of complex physical problems. 

1.2 Limitations of Purely Data-Driven AI in Physical Systems 
Despite their success in many domains, purely data-driven AI approaches face several critical 
limitations when applied to modeling complex physical systems: 
Data Requirements: Deep learning models typically require vast amounts of labeled data to 
achieve acceptable performance [5]. In specialized domains such as advanced manufacturing or 
aerospace engineering, high-quality datasets may be scarce, especially for rare events or 
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extreme conditions [6]. The cost and practical challenges of data acquisition represent 
significant barriers to the application of conventional deep learning in these fields. 
Limited Generalization: Data-driven models often perform poorly when extrapolating beyond 
their training distribution [7]. Physical systems frequently exhibit complex, non-linear behaviors 
that may not be fully represented in available training data, leading to unreliable predictions in 
novel situations. This limitation is particularly problematic in engineering and defense 
applications where models must perform reliably under varying and potentially extreme 
conditions [8]. 
Lack of Interpretability: Conventional deep learning models operate as "black boxes," making it 
difficult to understand the physical reasoning behind their predictions [9]. This opacity 
undermines trust in critical applications where safety and reliability are paramount. 
Additionally, purely data-driven models may produce outputs that, while statistically consistent 
with training data, violate fundamental physical laws such as conservation principles [10]. 
Computational Complexity: Many physical systems of interest, such as turbulent fluid flows or 
multiscale material behaviors, are inherently high-dimensional and exhibit complex dynamics 
[11]. Purely data-driven approaches often struggle to effectively capture these complexities 
without incorporating domain knowledge, regardless of data availability [12]. 

1.3 The Emergence of Physics-Informed Neural Networks 
Physics-Informed Neural Networks have emerged as a promising solution to these challenges 
[4]. PINNs integrate prior physical knowledge, typically in the form of partial differential 
equations (PDEs), directly into the neural network training process. This approach effectively 
leverages both the flexibility of deep learning and the structured constraints of physical laws. 

The core innovation of PINNs lies in formulating the neural network training as a physics-
constrained optimization problem. By including PDE residuals in the loss function, PINNs are 
trained to satisfy both the available data and the governing physical equations simultaneously 
[13]. This hybrid approach offers several advantages: 

1. Data Efficiency: By incorporating physical constraints, PINNs can achieve accurate 
results with significantly less data than purely data-driven methods [14]. 

2. Enhanced Generalization: The embedded physical laws provide a strong inductive bias 
that improves model performance on unseen scenarios [15]. 

3. Physical Consistency: Solutions generated by PINNs naturally respect the underlying 
physical principles, avoiding physically impossible predictions [16]. 

4. Interpretability: The integration of physical laws enhances model transparency and 
facilitates scientific discovery [17]. 

This paper provides a comprehensive review of Physics-Informed Neural Networks, examining 
their mathematical foundations, implementation strategies, applications, current challenges, 
and future research directions. By synthesizing recent advances in this rapidly evolving field, we 
aim to provide researchers and practitioners with a clear understanding of the capabilities, 
limitations, and potential of PINNs for scientific and engineering applications. 
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2. Mathematical Foundations 

2.1 Neural Networks as Universal Function Approximators 
Neural networks serve as the computational backbone of PINNs, leveraging their universal 
approximation capabilities to represent complex functional relationships [18]. In the context of 
PINNs, a neural network with parameters θ approximates the solution u to a physical problem: 

u(x) ≈ uθ(x) 
where x represents the independent variables (e.g., spatial coordinates and time). The 
approximation uθ(x) can be constructed using standard neural network architectures, typically 
comprising multiple fully connected layers with nonlinear activation functions. 

The universal approximation theorem establishes that neural networks with sufficient capacity 
can approximate any continuous function to arbitrary precision [19]. This theoretical 
foundation supports the use of neural networks for representing solutions to differential 
equations, which are often complex, nonlinear functions. 

2.2 Governing Equations and Boundary Conditions 
Physical systems are typically described by partial differential equations (PDEs) of the form: 

ℒu(x) = f(x) for x ∈ Ω 
where ℒ is a differential operator, u(x) is the solution, f(x) is a forcing term, and Ω represents 
the computational domain. The PDE is accompanied by boundary conditions: 

ℬu(x) = g(x) for x ∈ ∂Ω 
where ℬ is a boundary operator, g(x) specifies the boundary values, and ∂Ω denotes the 
boundary of the domain. 

For initial value problems, an additional condition specifies the state at the initial time t₀: 
u(x, t₀) = h(x) 

These equations mathematically encode the physical laws governing the system's behavior, 
such as conservation of mass, momentum, or energy. 

2.3 PINN Loss Function Formulation 
The core innovation of PINNs is the incorporation of physical laws into the neural network 
training through the loss function [4]. A typical PINN loss function comprises several 
components: 

L(θ) = λDE·LDE(θ) + λBC·LBC(θ) + λIC·LIC(θ) + λData·LData(θ) 
where: 

1. PDE Residual Loss (LDE): Measures how well the neural network satisfies the governing 
differential equation: LDE(θ) = (1/N_r) Σ|ℒuθ(x_i) - f(x_i)|² where {x_i}i=1,...N_r are 
collocation points distributed throughout the domain. 
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2. Boundary Condition Loss (LBC): Quantifies the error in satisfying boundary conditions: 
LBC(θ) = (1/N_b) Σ|ℬuθ(x_i) - g(x_i)|² where {x_i}i=1,...N_b are points on the domain 
boundary. 

3. Initial Condition Loss (LIC): For time-dependent problems, measures adherence to initial 
conditions: LIC(θ) = (1/N_0) Σ|uθ(x_i, t₀) - h(x_i)|² where {x_i}i=1,...N_0 are points at the 
initial time. 

4. Data Loss (LData): Incorporates available observational data: LData(θ) = (1/N_d) 
Σ|uθ(x_i) - u_data(x_i)|² where {x_i, u_data(x_i)}i=1,...N_d represents the observed data 
points. 

The coefficients λDE, λBC, λIC, and λData are weighting parameters that balance the 
contribution of each term to the total loss. 

2.4 Automatic Differentiation 
A crucial enabling technology for PINNs is automatic differentiation (AD), which allows for the 
efficient and accurate computation of derivatives required for evaluating the PDE residuals [20]. 
Unlike numerical differentiation methods that approximate derivatives using finite differences, 
AD computes exact derivatives through systematic application of the chain rule. 

In PINNs, automatic differentiation is used to calculate the derivatives of the neural network 
output uθ(x) with respect to the input variables x. For example, for a second-order PDE, 
derivatives up to ∂²uθ/∂x² can be efficiently computed. These derivatives are then used to 
evaluate the PDE residual at the collocation points. 

Modern deep learning frameworks, such as TensorFlow and PyTorch, provide built-in automatic 
differentiation capabilities, greatly simplifying the implementation of PINNs. This technology 
enables the seamless integration of differential equations into the neural network training 
process without resorting to discretization methods used in traditional numerical solvers. 

3. PINN Implementation Strategies 

3.1 Network Architecture Design 
The choice of neural network architecture significantly impacts PINN performance. While early 
implementations primarily used fully connected feedforward networks [4], recent research has 
explored more sophisticated architectures: 
Fully Connected Networks: The standard architecture consists of multiple fully connected 
layers with activation functions such as tanh or swish, which exhibit smoothness properties 
beneficial for approximating physical solutions [21]. 
Residual Networks (ResNets): These architectures, incorporating skip connections between 
layers, have demonstrated improved training stability and performance for complex physical 
systems [22]. 
Specialization for Physical Problems: Some approaches use specialized architectures designed 
to capture specific physical properties. For example, Hamiltonian Neural Networks preserve 
energy conservation [23], while Lagrangian Neural Networks respect variational principles [24]. 
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The width (number of neurons per layer) and depth (number of layers) of the network must be 
calibrated according to the complexity of the physical problem. Problems with intricate solution 
features typically require deeper networks with more parameters. 

3.2 Sampling Strategies 
The distribution of collocation points for evaluating the PDE residuals significantly affects PINN 
training efficiency and accuracy: 
Uniform Sampling: The simplest approach distributes points uniformly across the domain, but 
may be inefficient for problems with localized features. 
Adaptive Sampling: These methods dynamically adjust the distribution of collocation points 
based on error estimates or solution complexity [25]. Points are concentrated in regions with 
high PDE residuals or steep gradients. 
Physics-Guided Sampling: Domain knowledge can inform sampling strategies, focusing 
computational resources on physically significant regions [26]. 

Recent advances in self-adaptive sampling have demonstrated substantial improvements in 
training efficiency and solution accuracy, particularly for problems with multiscale features or 
discontinuities [27]. 

3.3 Loss Balancing Techniques 
Balancing the different components of the PINN loss function presents a significant challenge. 
Several approaches have been developed to address this issue: 
Static Weighting: Assigning fixed weights to different loss terms based on prior knowledge or 
empirical tuning. 
Dynamic Weighting: Adaptively adjusting weights during training based on the relative 
magnitudes or gradients of the loss components [28]. 
Learning Rate Annealing: Gradually changing the learning rates for different loss components 
throughout the training process [29]. 
Gradient-Based Methods: Techniques like gradient normalization or gradient surgery that 
directly manipulate the gradients to achieve balanced training [30]. 

Proper loss balancing is crucial for stable training and accurate solutions, especially for 
problems with competing objectives or vastly different scales. 

3.4 Domain Decomposition Methods 
For problems with complex geometries or multiscale features, domain decomposition 
approaches split the computational domain into smaller, more manageable subdomains: 
Overlapping Domains: Adjacent subdomains share overlapping regions, with continuity 
enforced through additional penalty terms in the loss function [31]. 
Non-Overlapping Domains: Subdomains connect at interfaces, with continuity and flux 
conditions imposed as constraints [32]. 

Domain decomposition enhances scalability, allows for parallel training, and improves 
performance on problems with localized features or geometrical complexity. These methods 
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also enable the application of PINNs to large-scale problems that would be challenging to tackle 
with a single network. 

4. Applications of PINNs 

4.1 Fluid Dynamics 
PINNs have demonstrated remarkable capabilities in fluid dynamics applications, offering 
advantages over traditional computational fluid dynamics (CFD) methods in certain scenarios: 
Incompressible Flows: PINNs have been successfully applied to solve the Navier-Stokes 
equations for laminar flows around obstacles, achieving accurate predictions of velocity and 
pressure fields [33]. The mesh-free nature of PINNs simplifies the handling of complex 
geometries that would require sophisticated meshing in traditional CFD. 
Turbulence Modeling: Recent advances have extended PINNs to turbulent flow regimes, 
incorporating Reynolds-Averaged Navier-Stokes (RANS) models or directly resolving the 
relevant scales [34]. These approaches show promise for applications where traditional 
turbulence models face limitations. 
Flow Field Reconstruction: PINNs excel at reconstructing full flow fields from sparse 
measurements, leveraging physical constraints to infer unobserved quantities [35]. This 
capability is valuable for experimental data analysis and flow monitoring in real-world systems. 

The mesh-free nature of PINNs offers computational advantages for flows with complex 
geometries or moving boundaries, while their data assimilation capabilities enable novel 
applications in flow reconstruction and prediction. 

4.2 Structural Analysis 
In structural mechanics, PINNs provide new approaches to both forward and inverse problems: 
Elasticity and Deformation: PINNs can accurately predict stress and strain distributions in 
structures under various loading conditions, solving both linear and nonlinear elasticity 
problems [36]. The continuous nature of neural network representations facilitates the 
computation of derived quantities like stress concentrations. 
Damage Detection: For structural health monitoring applications, PINNs have been employed 
to detect and characterize damage from limited sensor data [37]. By incorporating the physics 
of damaged structures, these models can infer damage parameters with minimal 
instrumentation. 
Material Characterization: PINNs provide an effective framework for inverse problems in 
material modeling, identifying constitutive parameters from experimental measurements [38]. 
This capability streamlines the development and calibration of material models for complex 
materials. 

The ability of PINNs to handle both forward and inverse problems within a unified framework 
offers advantages for integrated approaches to structural design, analysis, and monitoring. 

4.3 Heat Transfer and Diffusion Processes 
Heat transfer and diffusion problems represent another important application area for PINNs: 
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Conduction and Convection: PINNs have been applied to heat conduction problems with 
complex geometries and boundary conditions, as well as coupled conduction-convection 
scenarios [39]. Their mesh-free nature simplifies the handling of multimaterial interfaces and 
irregular domains. 
Phase Change: For problems involving phase transitions, PINNs can track moving phase 
boundaries without requiring explicit interface tracking methods [40]. This advantage is 
particularly valuable for solidification and melting processes. 
Inverse Heat Transfer: PINNs excel at inverse problems such as source identification and 
boundary condition estimation from internal temperature measurements [41]. These 
capabilities support applications in thermal management, process control, and failure analysis. 

The continuous, differentiable nature of neural network representations facilitates the 
computation of heat fluxes and other derived quantities, offering advantages over traditional 
numerical methods, particularly for inverse problems. 

4.4 Multiphysics and Coupled Problems 
One of the most promising aspects of PINNs is their natural extension to multiphysics problems 
involving coupled physical phenomena: 
Fluid-Structure Interaction: PINNs can simultaneously solve fluid dynamics and structural 
mechanics equations with appropriate coupling conditions at interfaces [42]. This unified 
approach avoids the algorithmic complexity of traditional partitioned methods. 
Electromagnetics and Wave Propagation: Applications in electromagnetics and acoustic wave 
propagation demonstrate the versatility of PINNs for handling wave equations coupled with 
other physical processes [43]. 
Reactive Transport: For systems involving fluid flow, chemical reactions, and species transport, 
PINNs provide a framework for solving the coupled equations with appropriate conservation 
principles [44]. 

The unified treatment of multiple physics within a single computational framework represents a 
significant advantage of PINNs over traditional methods that often require complex coupling 
algorithms between specialized solvers. 

5. Comparative Analysis: PINNs vs. Traditional Methods 

5.1 Advantages of PINNs 
Mesh-Free Approach: PINNs eliminate the need for computational meshes, simplifying the 
handling of complex geometries and moving boundaries [45]. This advantage is particularly 
valuable for problems with evolving domains or multiscale features. 
Data Integration: PINNs naturally incorporate both physical models and observational data, 
enabling seamless data assimilation and hybrid modeling [46]. This integration supports 
applications where partial observations need to be combined with physical principles. 
Inverse Problem Capabilities: The differentiable nature of neural networks facilitates 
parameter estimation and inverse problem solving within the same framework as forward 
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problems [47]. This unified approach streamlines workflows in scientific and engineering 
applications. 
Uncertainty Quantification: Recent extensions incorporate probabilistic frameworks to 
quantify uncertainties in predictions and parameters [48]. These capabilities support robust 
decision-making in engineering design and analysis. 

5.2 Limitations and Challenges 
Training Difficulties: PINNs often face challenges in training convergence, particularly for 
problems with multiple scales or sharp features [49]. The optimization landscape can be 
complex, with many local minima that complicate the training process. 
Computational Cost: For forward problems where traditional numerical methods are well-
established, PINNs may require more computational resources during the training phase [50]. 
This limitation becomes less significant for inverse problems or when considering the entire 
workflow. 
Solution Accuracy: While PINNs can achieve high accuracy for smooth solutions, they may 
struggle with discontinuities, shocks, or highly oscillatory functions without specialized 
adaptations [51]. 
Theoretical Understanding: The theoretical foundations of PINNs, including convergence 
guarantees and error bounds, remain less developed compared to classical numerical methods 
[52]. This gap affects confidence in their application to critical systems. 

5.3 Computational Performance Comparison 
Quantitative comparisons between PINNs and traditional numerical methods reveal domain-
specific trade-offs: 
Forward Problems: For standard forward problems with simple geometries, traditional 
methods like finite elements or finite volumes often outperform PINNs in terms of 
computational efficiency and accuracy [53]. However, PINNs become competitive for problems 
with complex geometries or multiphysics coupling. 
Inverse Problems: PINNs demonstrate superior performance for many inverse problems, 
requiring fewer function evaluations and providing more robust parameter estimates compared 
to traditional approaches based on repeated forward solves [54]. 
Real-Time Applications: Once trained, PINNs offer rapid inference capabilities suitable for real-
time applications, outperforming traditional methods that require solving systems of equations 
at each time step [55]. 

The choice between PINNs and traditional methods ultimately depends on the specific 
application, with PINNs offering particular advantages for complex geometries, inverse 
problems, multiphysics coupling, and data integration scenarios. 

6. Current Challenges and Research Directions 

6.1 Training Convergence and Stability 
Training convergence remains a significant challenge for PINNs, particularly for problems with 
multiple scales or complex physical behaviors: 
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Optimization Algorithms: Research on specialized optimization methods for PINNs aims to 
improve training stability and convergence rates [56]. Techniques like curriculum learning, 
where simpler problems are solved before tackling more complex ones, show promise. 
Loss Function Design: Novel loss formulations, including physics-informed normalization and 
adaptive weighting schemes, address the balance between different physical constraints [57]. 
Initialization Strategies: Proper initialization of network weights can significantly impact 
training success, with physics-guided initialization methods showing particular promise [58]. 

Recent advances in understanding the training dynamics of PINNs provide insights into failure 
modes and guide the development of more robust training methodologies. 

6.2 Scalability to High-Dimensional Problems 
Scaling PINNs to high-dimensional problems presents computational and methodological 
challenges: 
Dimensionality Reduction: Techniques such as proper orthogonal decomposition or 
autoencoders can reduce the effective dimensionality of the problem space [59]. 
Physics-Guided Parameterization: Domain knowledge can inform the construction of lower-
dimensional parameterizations that capture the essential physics of high-dimensional systems 
[60]. 
Tensor Network Approaches: Adapted from quantum physics, tensor networks offer efficient 
representations of high-dimensional functions with exploitable structure [61]. 

Progress in addressing the curse of dimensionality will expand the applicability of PINNs to 
complex systems with many degrees of freedom. 

6.3 Theoretical Foundations and Error Analysis 
The theoretical understanding of PINNs lags behind their practical applications, creating 
opportunities for foundational research: 
Convergence Analysis: Rigorous mathematical analysis of convergence properties and error 
bounds for PINNs under different conditions [62]. 
Approximation Theory: Extending classical results in approximation theory to the context of 
PINNs, particularly for solutions to differential equations [63]. 
Stability Analysis: Investigating the numerical stability of PINN solutions, especially for time-
dependent problems and systems with multiple time scales [64]. 

Strengthening the theoretical foundations of PINNs will enhance confidence in their application 
to critical systems and guide methodological improvements. 

6.4 Integration with Physical Simulations 
Hybrid approaches combining PINNs with traditional simulation methods represent a promising 
research direction: 
Multifidelity Modeling: Frameworks that integrate high-fidelity physical simulations with PINN-
based surrogate models to balance accuracy and computational efficiency [65]. 
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Physics-Enhanced Transfer Learning: Transferring knowledge from physical simulations to 
PINNs to improve generalization capabilities and reduce training data requirements [66]. 
Simulation-Assisted Training: Using traditional numerical methods to generate training data or 
provide initial conditions for PINN training [67]. 

These hybrid approaches leverage the complementary strengths of PINNs and traditional 
methods to address complex multiscale, multiphysics problems. 

7. Future Outlook 

7.1 Emerging Applications 
The versatility of PINNs continues to drive their expansion into new application domains: 
Biological Systems: Modeling complex biological processes, from intracellular dynamics to 
organ-level physiology, with coupled reaction-diffusion systems [68]. 
Climate and Earth System Science: Applications to atmospheric and oceanic flows, with 
potential for improved parameterizations of subgrid processes in climate models [69]. 
Advanced Materials Design: Accelerating the discovery and characterization of novel materials 
through PINN-based multiscale modeling and inverse design [70]. 

These emerging applications highlight the potential of PINNs to transform scientific computing 
across diverse domains by integrating physical principles with data-driven approaches. 

7.2 Methodological Innovations 
Several promising methodological directions are likely to shape the future development of 
PINNs: 
Operator Learning: Extensions beyond function approximation to directly learn operators 
mapping between function spaces, enabling more efficient solution of families of related PDEs 
[71]. 
Symmetry-Preserving Architectures: Network designs that intrinsically respect physical 
symmetries and conservation laws, improving both accuracy and generalization [72]. 
Self-Supervised Learning: Leveraging unlabeled data and physical constraints for training PINNs 
without explicit supervision [73]. 

These innovations aim to enhance the efficacy, efficiency, and applicability of PINNs across 
scientific and engineering domains. 

7.3 Interdisciplinary Opportunities 
The interdisciplinary nature of PINNs creates opportunities for cross-fertilization between 
fields: 
Computational Mathematics and Scientific Computing: Exchange of ideas between traditional 
numerical methods and neural network approaches, leading to hybrid algorithms with 
complementary strengths [74]. 
Statistical Physics and Machine Learning: Insights from statistical physics informing the design 
and analysis of PINN architectures and training dynamics [75]. 
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Scientific Discovery and Theory Development: PINNs as tools for automated discovery of 
physical laws and mechanisms from data, potentially accelerating scientific progress [76]. 
The integration of domain knowledge from physics, mathematics, and computer science will 
continue to drive innovations in the theory and application of PINNs. 

8. Conclusion 
Physics-Informed Neural Networks represent a paradigm shift in scientific computing, 
seamlessly integrating the expressivity of deep learning with the structured constraints of 
physical laws. By embedding domain knowledge directly into the learning process, PINNs 
address critical limitations of purely data-driven approaches for modeling complex physical 
systems, including data scarcity, limited generalization, and physical implausibility. 

The mathematical foundations, implementation strategies, and diverse applications reviewed in 
this paper demonstrate the versatility and potential of PINNs across multiple scientific and 
engineering domains. While challenges remain in training convergence, scalability, and 
theoretical understanding, ongoing research continues to enhance the capabilities and 
reliability of these methods. 

Looking forward, the continued development of PINNs and related physics-informed machine 
learning approaches promises to transform scientific computing by enabling more efficient, 
accurate, and flexible modeling of complex physical systems. This transformation will support 
advances in critical applications ranging from engineering design and analysis to scientific 
discovery and understanding. 

By bridging the historical divide between first-principles modeling and data-driven approaches, 
PINNs exemplify a broader trend toward knowledge-enhanced artificial intelligence that 
leverages both human understanding of physical principles and the pattern-recognition 
capabilities of modern machine learning. This synergistic approach holds tremendous potential 
for accelerating progress in addressing complex scientific and engineering challenges. 
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